Electrocatalytic Behavior of Hemoglobin Oxidation of Hydrazine Based on ZnO Nano-rods with Carbon Nanofiber Modified Electrode.
نویسندگان
چکیده
A novel biosensor was developed by immobilizing hemoglobin (Hb) on a glassy carbon electrode (GCE) modified with a composite of ZnO nano-rods and carbon nanofiber (CNF), a strong reducer, hydrazine, was firstly used to evaluate the electrochemical behavior of Hb on Hb/ZnO/CNF/GCE. UV-vis and circular dichroism (CD) spectra indicated the conformational structure of Hb interaction with ZnO/CNF was predominantly an α-helical structure. The modified electrodes were characterized by scanning electron microscopy (SEM), electron impedance spectroscopy (EIS), and cyclic voltammetry. Electrocatalytic mechanism of Hb to oxidation reaction of hydrazine was suggested. The bioelectrocatalytic activity, kinetic parameters of Michaelis-Menten constant (Km), stability and reproducibility were also investigated. A linear dependence of peak currents to the concentrations of hydrazine was observed in the range from 1.98 × 10(-5) to 1.71 × 10(-3) mol L(-1) with a correlation coefficient of 0.998, and a detection limit (S/N = 3) of 6.60 μmol L(-1) was estimated.
منابع مشابه
Electrocatalytic Oxidation of Hydrazine at Epinephrine Modified Glassy Carbon Electrode (EPMGCE).
A thin film of epinephrine (EP) was electrochemically deposited on the surface of glassy carbon electrode previously activated in NaHCO3 solution. The cyclic voltammograms of the modified electrode indicate that the surface confined EP are strongly dependent on the solution pH, as expected for quinone/hydroquinone functionalities. The EP-modified glassy carbon electrode exhibited...
متن کاملالکترود خمیرکربن اصلاح شده با پروسین بلو به عنوان حسگر
Electrochemical behavior of a Prussian blue -modified carbon paste electrode and their applications to electrocatalytic activity for hydrazine oxidation. The electrochemical behavior and stability of the modified electrodes as well as electro-oxidation of hydrazine at the electrode were investigated using cyclic voltammetry method. At the modified electrode, the oxidation of hydrazine occurs ...
متن کاملElectrochemical Detection of Hydrazine Using a Copper oxide Nanoparticle Modified Glassy Carbon Electrode
Metallic copper nanoparticles modified glassy carbon electrode is fabricated by reduction of CuSO4 in the presence of cetyltrimethylammonium bromide (CTAB) through potentiostatic method. As-prepared nanoparticles are characterized by scanning electron microscopy and electrochemical methods. Copper oxide modified glassy carbon electrode (nano-CuO/MGCE) is prepared using consecutive potential sca...
متن کاملModified Glass Carbon Electrode (GCE) Electropolymerized Polypyrrole Nanofibers with Hemoglobin (Hb) Film as a Unique Biosensor for Nitrite Determination
Abstract: In this study, we were investigated behavior the electrochemical reductionof nitrite at a hemoglobin (Hb) immobilized on glass carbon electrode (GCE) containingpolypyrol nanofiber (ppy) films. Polypyrrole (PPy) nanofibers have been constructed onGCE applying electrochemical technique, and can to deposit diverse polymers onminiaturized electrodes with this commo...
متن کاملApplication of carbon ceramic modified electrode with prussian blue for electrocatalytic oxidation of nitrite ion
A novel chemically modified electrode containing Prussian blue complex was achieved on the surface of glass carbon electrode by sol-gel technique. The electrochemical behavior of modified electrode was characterized by cyclic voltammetry in detail. The film electrode obtained was very stable and exhibited electrocatalytic response for oxidation of nitrite. Results showed at bare GC electrode, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
دوره 31 10 شماره
صفحات -
تاریخ انتشار 2015